Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 266
Filtrar
1.
Nutrients ; 15(21)2023 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-37960342

RESUMO

Defects in mitochondrial fatty acid ß-oxidation (FAO) impair metabolic flexibility, which is an essential process for energy homeostasis. Very-long-chain acyl-CoA dehydrogenase (VLCADD; OMIM 609575) deficiency is the most common long-chain mitochondrial FAO disorder presenting with hypoglycemia as a common clinical manifestation. To prevent hypoglycemia, triheptanoin-a triglyceride composed of three heptanoates (C7) esterified with a glycerol backbone-can be used as a dietary treatment, since it is metabolized into precursors for gluconeogenesis. However, studies investigating the effect of triheptanoin on glucose homeostasis are limited. To understand the role of gluconeogenesis in the pathophysiology of long-chain mitochondrial FAO defects, we injected VLCAD-deficient (VLCAD-/-) mice with 13C3-glycerol in the presence and absence of heptanoate (C7). The incorporation of 13C3-glycerol into blood glucose was higher in VLCAD-/- mice than in WT mice, whereas the difference disappeared in the presence of C7. The result correlates with 13C enrichment of liver metabolites in VLCAD-/- mice. In contrast, the C7 bolus significantly decreased the 13C enrichment. These data suggest that the increased contribution of gluconeogenesis to the overall glucose production in VLCAD-/- mice increases the need for gluconeogenesis substrate, thereby avoiding hypoglycemia. Heptanoate is a suitable substrate to induce glucose production in mitochondrial FAO defect.


Assuntos
Hipoglicemia , Erros Inatos do Metabolismo Lipídico , Doenças Mitocondriais , Camundongos , Animais , Heptanoatos , Acil-CoA Desidrogenase de Cadeia Longa/genética , Acil-CoA Desidrogenase de Cadeia Longa/metabolismo , Glicerol , Ácidos Graxos/metabolismo , Glucose/uso terapêutico , Homeostase
2.
Rinsho Shinkeigaku ; 63(10): 656-660, 2023 Oct 25.
Artigo em Japonês | MEDLINE | ID: mdl-37779023

RESUMO

A 25-year-old Japanese woman with a history of repeated episodes of rhabdomyolysis since the age of 12 presented with rhabdomyolysis caused by hyperemesis gravidarum. Blood tests showed an elevated serum CK level (11,755 |IU/l; normal: 30-180 |IU/l). Carnitine fractionation analysis revealed low levels of total carnitine (18.3 |µmol/l; normal: 45-91 |µmol/l), free carnitine (13.1 |µmol/l; normal: 36-74 |µmol/l), and acylcarnitine (5.2 |µmol/l; normal: 6-23 |µmol/l). Tandem mass spectrometry showed high levels of C14:1 acylcarnitine (0.84 |nmol/ml: normal: <0.4 |nmol/ml) and a high C14:1/C2 ratio of 0.253 (normal: <0.013), indicating a potential diagnosis of very long-chain acyl-CoA dehydrogenase (VLCAD) deficiency. Enzyme activity measurement in the patient's peripheral blood lymphocytes confirmed the diagnosis of VLCAD deficiency, with low palmitoyl-CoA dehydrogenase levels (6.5% of normal control value). With the patient's informed consent, acyl-CoA dehydrogenase very long-chain (ACADVL) gene analysis revealed compound heterozygous mutations of c.1332G>A in exon 13 and c.1349G>A (p.R450H) in exon 14. In Japan, neonatal mass screening is performed to detect congenital metabolic diseases. With the introduction of tandem mass screening in 2014, fatty acid metabolism disorders, including VLCAD deficiency, are being detected before the onset of symptoms. However, it is important to note that mass screening cannot detect all cases of this disease. For patients with recurrent rhabdomyolysis, it is essential to consider congenital diseases, including fatty acid metabolism disorders, as a potential diagnosis.


Assuntos
Hiperêmese Gravídica , Erros Inatos do Metabolismo Lipídico , Rabdomiólise , Recém-Nascido , Feminino , Gravidez , Humanos , Adulto , Hiperêmese Gravídica/complicações , Hiperêmese Gravídica/diagnóstico , Acil-CoA Desidrogenase de Cadeia Longa/genética , Erros Inatos do Metabolismo Lipídico/complicações , Erros Inatos do Metabolismo Lipídico/diagnóstico , Erros Inatos do Metabolismo Lipídico/genética , Rabdomiólise/diagnóstico , Rabdomiólise/etiologia , Carnitina , Ácidos Graxos
3.
Mol Genet Metab ; 140(3): 107668, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37549443

RESUMO

Very long-chain acyl-CoA dehydrogenase (VLCAD) deficiency (VLCADD) is a relatively common inborn error of metabolism, but due to difficulty in accurately predicting affected status through newborn screening, molecular confirmation of the causative variants by sequencing of the ACADVL gene is necessary. Although the ACMG/AMP guidelines have helped standardize variant classification, ACADVL variant classification remains disparate due to a phenotype that can be nonspecific, the possibility of variants that produce late-onset disease, and relatively high carrier frequency, amongst other challenges. Therefore, an ACADVL-specific variant curation expert panel (VCEP) was created to facilitate the specification of the ACMG/AMP guidelines for VLCADD. We expect these guidelines to help streamline, increase concordance, and expedite the classification of ACADVL variants.


Assuntos
Erros Inatos do Metabolismo Lipídico , Doenças Mitocondriais , Doenças Musculares , Humanos , Recém-Nascido , Acil-CoA Desidrogenase de Cadeia Longa/genética , Síndrome Congênita de Insuficiência da Medula Óssea/genética , Testes Genéticos , Variação Genética , Erros Inatos do Metabolismo Lipídico/diagnóstico , Erros Inatos do Metabolismo Lipídico/genética , Doenças Mitocondriais/genética , Doenças Musculares/genética
4.
Biochim Biophys Acta Mol Basis Dis ; 1869(8): 166843, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37558007

RESUMO

Very-long chain acyl-CoA dehydrogenase (VLCAD) catalyzes the initial step of mitochondrial long chain (LC) fatty acid ß-oxidation (FAO). Inherited VLCAD deficiency (VLCADD) predisposes to neonatal arrhythmias whose pathophysiology is still not understood. We hypothesized that VLCADD results in global disruption of cardiac complex lipid homeostasis, which may set conditions predisposing to arrhythmia. To test this, we assessed the cardiac lipidome and related molecular markers in seven-month-old VLCAD-/- mice, which mimic to some extent the human cardiac phenotype. Mice were sacrificed in the fed or fasted state after receiving for two weeks a chow or a high-fat diet (HFD), the latter condition being known to worsen symptoms in human VLCADD. Compared to their littermate counterparts, HFD/fasted VLCAD-/- mouse hearts displayed the following lipid alterations: (1) Lower LC, but higher VLC-acylcarnitines accumulation, (2) higher levels of arachidonic acid (AA) and lower docosahexaenoic acid (DHA) contents in glycerophospholipids (GPLs), as well as (3) corresponding changes in pro-arrhythmogenic AA-derived isoprostanes and thromboxane B2 (higher), and anti-arrythmogenic DHA-derived neuroprostanes (lower). These changes were associated with remodeling in the expression of gene or protein markers of (1) GPLs remodeling: higher calcium-dependent phospholipase A2 and lysophosphatidylcholine-acyltransferase 2, (2) calcium handling perturbations, and (3) endoplasmic reticulum stress. Altogether, these results highlight global lipid dyshomeostasis beyond FAO in VLCAD-/- mouse hearts, which may set conditions predisposing the hearts to calcium mishandling and endoplasmic reticulum stress and thereby may contribute to the pathogenesis of arrhythmias in VLCADD in mice as well as in humans.


Assuntos
Acil-CoA Desidrogenase de Cadeia Longa , Doenças Mitocondriais , Camundongos , Humanos , Animais , Lactente , Acil-CoA Desidrogenase de Cadeia Longa/genética , Cálcio , Doenças Mitocondriais/metabolismo , Ácidos Graxos/metabolismo , Ácidos Graxos Insaturados , Arritmias Cardíacas
5.
Cells ; 11(17)2022 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-36078043

RESUMO

Background: Very long-chain acyl-CoA dehydrogenase (VLCAD) deficiency is an autosomal recessive disease that prevents the body from utilizing long-chain fatty acids for energy, most needed during stress and fasting. Symptoms can appear from infancy through childhood and adolescence or early adulthood, and include hypoglycemia, recurrent rhabdomyolysis, myopathy, hepatopathy, and cardiomyopathy. REN001 is a peroxisome-proliferator-activated receptor delta (PPARδ) agonist that modulates the expression of the genes coding for fatty acid ß-oxidation enzymes and proteins involved in oxidative phosphorylation. Here, we assessed the effect of REN001 on VLCAD-deficient patient fibroblasts. Methods: VLCAD-deficient patient and control fibroblasts were treated with REN001. Cells were harvested for gene expression analysis, protein content, VLCAD enzyme activity, cellular bioenergetics, and ATP production. Results: VLCAD-deficient cell lines responded differently to REN001 based on genotype. All cells had statistically significant increases in ACADVL gene expression. Small increases in VLCAD protein and enzyme activity were observed and were cell-line- and dose-dependent. Even with these small increases, cellular bioenergetics improved in all cell lines in the presence of REN001, as demonstrated by the oxygen consumption rate and ATP production. VLCAD-deficient cell lines containing missense mutations responded better to REN001 treatment than one containing a duplication mutation in ACADVL. Discussion: Treating VLCAD-deficient fibroblasts with the REN001 PPARδ agonist results in an increase in VLCAD protein and enzyme activity, and a decrease in cellular stress. These results establish REN001 as a potential therapy for VLCADD as enhanced expression may provide a therapeutic increase in total VLCAD activity, but suggest the need for mutation-specific treatment augmented by other treatment measures.


Assuntos
Acil-CoA Desidrogenase de Cadeia Longa , PPAR delta , Acil-CoA Desidrogenase de Cadeia Longa/genética , Trifosfato de Adenosina/metabolismo , Adolescente , Adulto , Criança , Síndrome Congênita de Insuficiência da Medula Óssea , Metabolismo Energético , Fibroblastos/metabolismo , Humanos , Erros Inatos do Metabolismo Lipídico , Doenças Mitocondriais , Doenças Musculares , PPAR delta/metabolismo
6.
Orphanet J Rare Dis ; 17(1): 360, 2022 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-36109795

RESUMO

BACKGROUND: Mitochondrial long-chain fatty acid oxidation and carnitine metabolism defects are a group of inherited metabolic diseases. We performed a retrospective cohort study to report on the phenotypic and genotypic spectrum of mitochondrial long-chain fatty acid oxidation and carnitine metabolism defects as well as their treatment outcomes. METHODS: All patients with mitochondrial long-chain fatty acid oxidation and carnitine metabolism defects were included. We divided patients into two groups to compare outcomes of those treated symptomatically (SymX) and asymptomatically (AsymX). We reviewed patient charts for clinical features, biochemical investigations, molecular genetic investigations, cardiac assessments, neuroimaging, treatments, and outcomes. RESULTS: There were 38 patients including VLCAD (n = 5), LCHAD (n = 4), CACT (n = 3), MAD (n = 1), CPT-I (n = 13), CPT-II (n = 3) deficiencies and CTD (n = 9). Fourteen patients were diagnosed symptomatically (SymX), and 24 patients were diagnosed asymptomatically (AsymX). Twenty-eight variants in seven genes were identified in 36 patients (pathogenic/likely pathogenic n = 25; variant of unknown significance n = 3). Four of those variants were novel. All patients with LCHAD deficiency had the common variant (p.Glu474Gln) in HADHA and their phenotype was similar to the patients reported in the literature for this genotype. Only one patient with VLCAD deficiency had the common p.Val283Ala in ACADVL. The different genotypes in the SymX and AsymX groups for VLCAD deficiency presented with similar phenotypes. Eight patients were treated with carnitine supplementation [CTD (n = 6), CPT-II (n = 1), and MAD (n = 1) deficiencies]. Thirteen patients were treated with a long-chain fat restricted diet and MCT supplementation. A statistically significant association was found between rhabdomyolysis, and hypoglycemia in the SymX group compared to the AsymX group. A higher number of hospital admissions, longer duration of hospital admissions and higher CK levels were observed in the SymX group, even though the symptomatic group was only 37% of the study cohort. CONCLUSION: Seven different mitochondrial long-chain fatty acid oxidation and carnitine metabolism defects were present in our study cohort. In our clinic, the prevalence of mitochondrial long-chain fatty acid oxidation and carnitine defects was 4.75%.


Assuntos
Acil-CoA Desidrogenase de Cadeia Longa , Carnitina , Acil-CoA Desidrogenase de Cadeia Longa/genética , Carnitina/metabolismo , Carnitina O-Palmitoiltransferase/genética , Síndrome Congênita de Insuficiência da Medula Óssea , Ácidos Graxos/metabolismo , Humanos , Erros Inatos do Metabolismo Lipídico , Doenças Mitocondriais , Doenças Musculares , Estudos Retrospectivos
7.
Nat Commun ; 13(1): 3669, 2022 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-35760926

RESUMO

Very long-chain acyl-CoA dehydrogenase (VLCAD) is an inner mitochondrial membrane enzyme that catalyzes the first and rate-limiting step of long-chain fatty acid oxidation. Point mutations in human VLCAD can produce an inborn error of metabolism called VLCAD deficiency that can lead to severe pathophysiologic consequences, including cardiomyopathy, hypoglycemia, and rhabdomyolysis. Discrete mutations in a structurally-uncharacterized C-terminal domain region of VLCAD cause enzymatic deficiency by an incompletely defined mechanism. Here, we conducted a structure-function study, incorporating X-ray crystallography, hydrogen-deuterium exchange mass spectrometry, computational modeling, and biochemical analyses, to characterize a specific membrane interaction defect of full-length, human VLCAD bearing the clinically-observed mutations, A450P or L462P. By disrupting a predicted α-helical hairpin, these mutations either partially or completely impair direct interaction with the membrane itself. Thus, our data support a structural basis for VLCAD deficiency in patients with discrete mutations in an α-helical membrane-binding motif, resulting in pathologic enzyme mislocalization.


Assuntos
Erros Inatos do Metabolismo Lipídico , Doenças Mitocondriais , Acil-CoA Desidrogenase de Cadeia Longa/genética , Acil-CoA Desidrogenase de Cadeia Longa/metabolismo , Síndrome Congênita de Insuficiência da Medula Óssea/genética , Humanos , Erros Inatos do Metabolismo Lipídico/genética , Erros Inatos do Metabolismo Lipídico/metabolismo , Doenças Mitocondriais/genética , Doenças Musculares
8.
Ir Med J ; 115(3): 565, 2022 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-35532898

RESUMO

Presentation A 20 year old female attended the Emergency Department by ambulance following a collapse at a concert. On arrival she was complaining of generalised muscular pain. She had not eaten for over 12 hours and had been dancing for approximately 6 hours. The patient was known to have Very-long-chain acyl-CoA dehydrogenase deficiency (VLCAD). She had a normal exam, and normal vital signs. Diagnosis A diagnosis of rhabdomyolysis was made after her creatinine kinase (CK) was found to be >100000 units/litre (Normal range < 170U/L). Her urine was dark brown with urinalysis positive for blood. Treatment The patient was admitted to the high dependency unit, where she was treated with intravenous fluids. Her urine output and renal function were closely monitored. She made a full recovery and was discharged home four days later. Conclusion (VLCAD) is an inherited, autosomal recessive, metabolic disorder caused by mutations in the ACADVL gene. Management includes treatment of manifestation, primary prevention of manifestation, and prevention of secondary complications.


Assuntos
Erros Inatos do Metabolismo Lipídico , Rabdomiólise , Acil-CoA Desidrogenase de Cadeia Longa/genética , Adulto , Síndrome Congênita de Insuficiência da Medula Óssea , Feminino , Humanos , Erros Inatos do Metabolismo Lipídico/complicações , Erros Inatos do Metabolismo Lipídico/diagnóstico , Erros Inatos do Metabolismo Lipídico/genética , Doenças Mitocondriais , Doenças Musculares , Rabdomiólise/diagnóstico , Rabdomiólise/etiologia , Rabdomiólise/terapia , Adulto Jovem
9.
Clin. transl. oncol. (Print) ; 24(5): 864-874, mayo 2022. graf
Artigo em Inglês | IBECS | ID: ibc-203788

RESUMO

PurposeVery-long-chain acyl-CoA dehydrogenase (VLCAD) is an essential mediator in fatty acid metabolism. The progression of human hepatocellular carcinoma (HCC) is closely associated with the disorder of energy supply. Here, we aimed to investigate the role and underlying molecule mechanism of VLCAD in pathological process of HCC.MethodsIn this study, VLCAD was induced silencing and overexpression using small hairpin RNA (shRNA) and lentiviral-mediated vector in HCC cell lines. The proliferation of HCC cells was determined using CCK-8 assay. Transwell assay and lung metastasis were performed to analysis cell metastasis in vitro and in vivo. ECAR and OCR were used to evaluate the activity of glycolysis and mitochondrial oxidative phosphorylation.ResultsOur data indicated that VLCAD was downregulated in human HCC tissues and cells. VLCAD overexpression strongly suppressed the proliferation and metastasis of HCC cells associating with the decrease of ATP accumulation and glycolysis activity. Importantly, the PI3K/AKT inhibitor LY294002 strongly abolished the role of shVLCAD in HCC cells. Our results suggested that VLCAD suppressed the growth and metastasis in HCC cells by inhibiting the activities of glycolysis and mitochondrial oxidative phosphorylation metabolism via PI3K/AKT pathway.ConclusionsTogether, present findings not only demonstrated the protective role of and molecular network of VLCAD in HCC cells but also indicated its and potential use as a target in the therapy of HCC.


Assuntos
Humanos , Acil-CoA Desidrogenase de Cadeia Longa/genética , Acil-CoA Desidrogenase de Cadeia Longa/metabolismo , Carcinoma Hepatocelular/patologia , Linhagem Celular Tumoral , Neoplasias Hepáticas/patologia , Fosfatidilinositol 3-Quinases/metabolismo , Proliferação de Células/genética , Regulação Neoplásica da Expressão Gênica
10.
Mol Genet Metab ; 136(1): 74-79, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35400565

RESUMO

Very long-chain acyl-CoA dehydrogenase (VLCAD) deficiency has been a target of expanded newborn screening (ENBS) using tandem mass spectrometry in Japan. Since the implementation of ENBS, a number of novel ACADVL variants responsible for VLCAD deficiency have been identified. In this study, genotypic differences in Japanese patients with VLCAD deficiency were investigated before and after ENBS. The ACADVL variants in 61 subjects identified through ENBS (ENBS group) and in 40 patients who subsequently developed clinical symptoms without undergoing ENBS (pre-ENBS group) were compared. Subjects in the ENBS group underwent genetic testing and/or VLCAD enzyme activity measurements. Patients in the pre-ENBS group were stratified into three clinical phenotypes and underwent genetic testing. This study revealed that the variants p.K264E, p.K382Q and c.996dupT were found in both groups, but their frequencies were lower in the ENBS group (5.2%, 3.1% and 4.2%, respectively) than in the pre-ENBS group (16.5%, 12.7% and 10.1%, respectively). In addition, p.C607S, p.T409M, p.M478I, p.G289R, p.C237R, p.T260M, and p.R229* were exclusively identified in the ENBS group. Among these variants, p.C607S exhibited the highest frequency (18.8%). The patients who were heterozygous for p.C607S demonstrated 7-42% of control enzyme activity. p.C607S is suspected to be unique to Japanese individuals. According to a comparison of enzyme activity, patients with the p.C607S variant may exhibit higher enzyme activity than those with the p.A416T, p.A180T, p.R450H, and p.K264E variants, which are responsible for the myopathic form of the disease. The VLCAD deficiency genotypes have changed since the initiation of ENBS in Japan.


Assuntos
Síndrome Congênita de Insuficiência da Medula Óssea , Erros Inatos do Metabolismo Lipídico , Doenças Mitocondriais , Doenças Musculares , Acil-CoA Desidrogenase/genética , Acil-CoA Desidrogenase de Cadeia Longa/genética , Síndrome Congênita de Insuficiência da Medula Óssea/epidemiologia , Humanos , Recém-Nascido , Japão/epidemiologia , Erros Inatos do Metabolismo Lipídico/epidemiologia , Doenças Mitocondriais/epidemiologia , Doenças Musculares/epidemiologia , Triagem Neonatal/métodos
11.
Cardiovasc Res ; 118(16): 3198-3210, 2022 12 29.
Artigo em Inglês | MEDLINE | ID: mdl-35388887

RESUMO

AIMS: Cardiomyopathy and arrhythmias can be severe presentations in patients with inherited defects of mitochondrial long-chain fatty acid ß-oxidation (FAO). The pathophysiological mechanisms that underlie these cardiac abnormalities remain largely unknown. We investigated the molecular adaptations to a FAO deficiency in the heart using the long-chain acyl-CoA dehydrogenase (LCAD) knockout (KO) mouse model. METHODS AND RESULTS: We observed enrichment of amino acid metabolic pathways and of ATF4 target genes among the upregulated genes in the LCAD KO heart transcriptome. We also found a prominent activation of the eIF2α/ATF4 axis at the protein level that was independent of the feeding status, in addition to a reduction of cardiac protein synthesis during a short period of food withdrawal. These findings are consistent with an activation of the integrated stress response (ISR) in the LCAD KO mouse heart. Notably, charging of several transfer RNAs (tRNAs), such as tRNAGln was decreased in LCAD KO hearts, reflecting a reduced availability of cardiac amino acids, in particular, glutamine. We replicated the activation of the ISR in the hearts of mice with muscle-specific deletion of carnitine palmitoyltransferase 2. CONCLUSIONS: Our results show that perturbations in amino acid metabolism caused by long-chain FAO deficiency impact cardiac metabolic signalling, in particular the ISR. These results may serve as a foundation for investigating the role of the ISR in the cardiac pathology associated with long-chain FAO defects.Translational Perspective: The heart relies mainly on mitochondrial fatty acid ß-oxidation (FAO) for its high energy requirements. The heart disease observed in patients with a genetic defect in this pathway highlights the importance of FAO for cardiac health. We show that the consequences of a FAO defect extend beyond cardiac energy homeostasis and include amino acid metabolism and associated signalling pathways such as the integrated stress response.


Assuntos
Ácidos Graxos , Mitocôndrias , Camundongos , Animais , Mitocôndrias/metabolismo , Ácidos Graxos/metabolismo , Oxirredução , Camundongos Knockout , Aminoácidos/metabolismo , RNA de Transferência/metabolismo , Acil-CoA Desidrogenase de Cadeia Longa/genética , Acil-CoA Desidrogenase de Cadeia Longa/metabolismo
12.
J Inherit Metab Dis ; 45(3): 529-540, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35218577

RESUMO

Very long-chain acyl-CoA dehydrogenase deficiency (VLCADD) is an autosomal recessive disease resulting from mutations in the ACADVL gene and is among the disorders tested for in newborn screening (NBS). Confirmatory sequencing following suspected VLCADD NBS results often identifies variants of uncertain significance (VUS) in the ACADVL gene, leading to uncertainty of diagnosis and providing effective treatment regimen. Currently, ACADVL has >300 VUSs in the ClinVar database that requiring characterization to determine potential pathogenicity. In this study, CRISPR/Cas9 genome editing was used to knock out ACADVL in HEK293T cells, and targeted deletion was confirmed by droplet digital polymerase chain reaction (PCR). No VLCAD protein was detected and an 84% decrease in enzyme activity using the electron transfer flavoprotein fluorescence reduction assay and C21-CoA as substrate was observed compared to control. Plasmids containing control or variant ACADVL coding sequence were transfected into the ACADVL null HEK293T. While transfection of control ACADVL restored VLCAD protein and enzyme activity, cells expressing the VLCAD Val283Ala mutant had 18% VLCAD enzyme activity and reduced protein compared to control. VLCAD Ile420Leu, Gly179Arg, and Gln406Pro produced protein comparable to control but 25%, 4%, and 5% VLCAD enzyme activity, respectively. Leu540Pro and Asp570_Ala572dup had reduced VLCAD protein and 10% and 3% VLCAD enzyme activity, respectively. VLCADD fibroblasts containing the same variations had decreased VLCAD protein and activity comparable to the transfection experiments. Generating ACADVL null HEK293T cell line allowed functional studies to determine pathogenicity of ACADVL exonic variants. This approach can be applied to multiple genes for other disorders identified through NBS.


Assuntos
Erros Inatos do Metabolismo Lipídico , Doenças Mitocondriais , Doenças Musculares , Acil-CoA Desidrogenase de Cadeia Longa/genética , Síndrome Congênita de Insuficiência da Medula Óssea , Células HEK293 , Humanos , Imidazóis , Recém-Nascido , Erros Inatos do Metabolismo Lipídico/diagnóstico , Erros Inatos do Metabolismo Lipídico/genética , Erros Inatos do Metabolismo Lipídico/terapia , Doenças Mitocondriais/genética , Doenças Musculares/diagnóstico , Triagem Neonatal , Sulfonamidas , Tiofenos
13.
Nat Commun ; 13(1): 139, 2022 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-35013270

RESUMO

Oxylipins are potent biological mediators requiring strict control, but how they are removed en masse during infection and inflammation is unknown. Here we show that lipopolysaccharide (LPS) dynamically enhances oxylipin removal via mitochondrial ß-oxidation. Specifically, genetic or pharmacological targeting of carnitine palmitoyl transferase 1 (CPT1), a mitochondrial importer of fatty acids, reveal that many oxylipins are removed by this protein during inflammation in vitro and in vivo. Using stable isotope-tracing lipidomics, we find secretion-reuptake recycling for 12-HETE and its intermediate metabolites. Meanwhile, oxylipin ß-oxidation is uncoupled from oxidative phosphorylation, thus not contributing to energy generation. Testing for genetic control checkpoints, transcriptional interrogation of human neonatal sepsis finds upregulation of many genes involved in mitochondrial removal of long-chain fatty acyls, such as ACSL1,3,4, ACADVL, CPT1B, CPT2 and HADHB. Also, ACSL1/Acsl1 upregulation is consistently observed following the treatment of human/murine macrophages with LPS and IFN-γ. Last, dampening oxylipin levels by ß-oxidation is suggested to impact on their regulation of leukocyte functions. In summary, we propose mitochondrial ß-oxidation as a regulatory metabolic checkpoint for oxylipins during inflammation.


Assuntos
Ácido 12-Hidroxi-5,8,10,14-Eicosatetraenoico/metabolismo , Metabolismo dos Lipídeos/genética , Mitocôndrias/efeitos dos fármacos , Oxilipinas/metabolismo , Peritonite/genética , Sepse/genética , Acil-CoA Desidrogenase de Cadeia Longa/sangue , Acil-CoA Desidrogenase de Cadeia Longa/genética , Animais , Carnitina O-Palmitoiltransferase/sangue , Carnitina O-Palmitoiltransferase/genética , Coenzima A Ligases/sangue , Coenzima A Ligases/genética , Feminino , Regulação da Expressão Gênica , Humanos , Recém-Nascido , Interferon gama/farmacologia , Lipidômica/métodos , Lipopolissacarídeos/farmacologia , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Macrófagos/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Mitocôndrias/metabolismo , Subunidade beta da Proteína Mitocondrial Trifuncional/sangue , Subunidade beta da Proteína Mitocondrial Trifuncional/genética , Oxirredução , Peritonite/sangue , Peritonite/induzido quimicamente , Peritonite/patologia , Células RAW 264.7 , Sepse/sangue , Sepse/patologia
14.
Clin Transl Oncol ; 24(5): 864-874, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35001339

RESUMO

PURPOSE: Very-long-chain acyl-CoA dehydrogenase (VLCAD) is an essential mediator in fatty acid metabolism. The progression of human hepatocellular carcinoma (HCC) is closely associated with the disorder of energy supply. Here, we aimed to investigate the role and underlying molecule mechanism of VLCAD in pathological process of HCC. METHODS: In this study, VLCAD was induced silencing and overexpression using small hairpin RNA (shRNA) and lentiviral-mediated vector in HCC cell lines. The proliferation of HCC cells was determined using CCK-8 assay. Transwell assay and lung metastasis were performed to analysis cell metastasis in vitro and in vivo. ECAR and OCR were used to evaluate the activity of glycolysis and mitochondrial oxidative phosphorylation. RESULTS: Our data indicated that VLCAD was downregulated in human HCC tissues and cells. VLCAD overexpression strongly suppressed the proliferation and metastasis of HCC cells associating with the decrease of ATP accumulation and glycolysis activity. Importantly, the PI3K/AKT inhibitor LY294002 strongly abolished the role of shVLCAD in HCC cells. Our results suggested that VLCAD suppressed the growth and metastasis in HCC cells by inhibiting the activities of glycolysis and mitochondrial oxidative phosphorylation metabolism via PI3K/AKT pathway. CONCLUSIONS: Together, present findings not only demonstrated the protective role of and molecular network of VLCAD in HCC cells but also indicated its and potential use as a target in the therapy of HCC.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Acil-CoA Desidrogenase de Cadeia Longa/genética , Acil-CoA Desidrogenase de Cadeia Longa/metabolismo , Carcinoma Hepatocelular/patologia , Linhagem Celular Tumoral , Proliferação de Células/genética , Regulação Neoplásica da Expressão Gênica , Humanos , Neoplasias Hepáticas/patologia , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo
15.
J Dermatol Sci ; 108(3): 178-186, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36639278

RESUMO

BACKGROUND: Radiation-induced skin injury is a serious concern during radiotherapy and accidental exposure to radiation. OBJECTIVE: This study aims to investigate the molecular events in early response to ionizing radiation of skin tissues and underlying mechanism. METHODS: Mice and rats were irradiated with an electron beam. Skin tissues were used for liquid chromatography-mass spectrometry (LC-MS)-based metabolomics, mRNA-Seq and single-cell RNA sequencing (scRNA-Seq). Human keratinocytes (HaCaT) and skin fibroblasts (WS1) were used for functional studies. RESULTS: The integrated analysis of metabolomics and transcriptomics showed that 6 key fatty acid-associated metabolites, 9 key fatty acid-associated genes and multiple fatty acid-associated pathways were most obviously enriched and increased in the irradiated skins. Among them, acyl-CoA dehydrogenase very long chain (ACADVL) was investigated in greater detail due to its most obvious expression difference and significance in fatty acid metabolism. ScRNA-Seq of rat skin from irradiated individuals revealed that ACADVL was expressed in all subpopulations of skin tissues, with variations at different timepoints after radiation. Immunohistochemistry confirmed an increased ACADVL expression in the epidermis from human sample and various animal models, including monkeys, rats and mice. The knockdown of ACADVL increased the radiosensitivity of human keratinocytes and human skin fibroblasts. Silencing of ACADVL facilitated the expression of apoptosis and pyroptosis-related proteins following ionizing radiation. CONCLUSION: This study illustrated that cutaneous fatty acid metabolism was altered in the early response of ionizing radiation, and fatty acid metabolism-associated ACADVL is involved in radiation-induced cell death.


Assuntos
Acil-CoA Desidrogenase de Cadeia Longa , Ácidos Graxos , Lesões por Radiação , Dermatopatias , Pele , Animais , Humanos , Camundongos , Ratos , Ácidos Graxos/metabolismo , Multiômica , Lesões por Radiação/metabolismo , Radiação Ionizante , Pele/metabolismo , Pele/efeitos da radiação , Dermatopatias/metabolismo , Acil-CoA Desidrogenase de Cadeia Longa/genética , Acil-CoA Desidrogenase de Cadeia Longa/metabolismo
16.
Clin Transl Sci ; 15(1): 182-194, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34437764

RESUMO

Inborn errors of mitochondrial fatty acid oxidation (FAO), such as medium-chain acyl-CoA dehydrogenase deficiency (MCAD) and very long-chain acyl-CoA dehydrogenase deficiency (VLCAD) affects cellular function and whole-body metabolism. Carnitine uptake deficiency (CUD) disturbs the transportation of fatty acids into the mitochondria, but when treated is a mild disease without significant effects on FAO. For improved clinical care of VLCAD in particular, estimation of FAO severity could be important. We have investigated whether the oxygen consumption rate (OCR) of peripheral blood mononuclear cells (PBMCs) obtained from patients with MCAD, VLCAD, and CUD can be used to study cellular metabolism in patients with FAO defects and to determine the severity of FAO impairment. PBMCs were isolated from patients with VLCAD (n = 9), MCAD (n = 5-7), and CUD (n = 5). OCR was measured within 6-hours of venous puncture using the Seahorse XFe96. The PBMCs were exposed to glucose alone or with caprylic acid (C8:0) or palmitic acid (C16:0). OCR was significantly lower in cells from patients with ß-oxidation deficiencies (MCAD and VLCAD) compared to CUD at basal conditions. When exposed to C16:0, OCR in VLCAD cells was unchanged, whereas OCR in MCAD cells increased but not to the levels observed in CUD. However, C8:0 did not increase OCR, as would be expected, in VLCAD cells. There was no clear relationship between clinical severity level and OCR. In patients with ß-oxidation deficiencies, changes of mitochondrial respiration in PBMCs are detectable, which indicate that PBMCs have translational potential for studies of ß-oxidation defects. However, further studies are warranted.


Assuntos
Acil-CoA Desidrogenase de Cadeia Longa/genética , Leucócitos Mononucleares , Erros Inatos do Metabolismo/genética , Mitocôndrias/genética , Mitocôndrias/metabolismo , Oxirredução , Acil-CoA Desidrogenase de Cadeia Longa/deficiência , Cardiomiopatias , Carnitina/deficiência , Criança , Pré-Escolar , Feminino , Genótipo , Humanos , Hiperamonemia , Masculino , Doenças Musculares
17.
J Med Case Rep ; 15(1): 441, 2021 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-34465376

RESUMO

BACKGROUND: Very long-chain acyl-coenzyme-A dehydrogenase deficiency is a rare, severe life-threatening metabolic disorder of mitochondrial fatty acid oxidation, caused by mutations in ACADVL gene. Here we present a genetically confirmed case of a South Asian baby girl with severe, early-onset form of very long-chain acyl-coenzyme-A dehydrogenase deficiency due to a novel mutation in ACADVL gene. CASE PRESENTATION: Index case was the second baby girl of second-degree consanguineous South Asian parents. She had an uncomplicated antenatal period and was born by spontaneous vaginal delivery at term with a birth weight of 2910 g. She had been noted to have fair skin complexion, hypotonia, and 3 cm firm hepatomegaly. Since birth, the baby developed grunting, poor feeding, and recurrent episodes of symptomatic hypoglycemia and convulsions with multiple semiology. Her septic screening and urine ketone bodies were negative. The baby had high anion gap metabolic acidosis and elevated transaminases and serum creatine phosphokinase levels. Echocardiogram at 4 months revealed bilateral ventricular hypertrophy. Acylcarnitine profile revealed elevated concentrations of tetradecanoylcarnitine (C14), tetradecanoylcarnitine C14:1, and C14:1/C16. Unfortunately, the baby died due to intercurrent respiratory illness at 4 months of age. Sequence analysis of ACADVL gene in perimortem blood sample revealed homozygous frame shift novel variant NM_001270447.1, c.711_712del p.(Phe237Leufs*38), which confirmed the diagnosis of very long-chain acyl-coenzyme-A dehydrogenase deficiency. CONCLUSIONS: This case demonstrates the importance of early diagnosis and management of very long-chain acyl-coenzyme-A dehydrogenase deficiency in improving the outcome of the patients. Implementation of newborn screening using tandem mass spectrometry in Sri Lanka will be beneficial to reduce the morbidity and mortality of treatable disorders of inborn errors.


Assuntos
Erros Inatos do Metabolismo Lipídico , Acil-CoA Desidrogenase de Cadeia Longa/genética , Criança , Coenzimas , Síndrome Congênita de Insuficiência da Medula Óssea , Feminino , Humanos , Lactente , Recém-Nascido , Erros Inatos do Metabolismo Lipídico/genética , Doenças Mitocondriais , Doenças Musculares , Mutação , Gravidez
18.
Cells ; 10(5)2021 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-34069977

RESUMO

Long-chain fatty acid oxidation disorders (lc-FAOD) are a group of diseases affecting the degradation of long-chain fatty acids. In order to investigate the disease specific alterations of the cellular lipidome, we performed undirected lipidomics in fibroblasts from patients with carnitine palmitoyltransferase II, very long-chain acyl-CoA dehydrogenase, and long-chain 3-hydroxyacyl-CoA dehydrogenase. We demonstrate a deep remodeling of mitochondrial cardiolipins. The aberrant phosphatidylcholine/phosphatidylethanolamine ratio and the increased content of plasmalogens and of lysophospholipids support the theory of an inflammatory phenotype in lc-FAOD. Moreover, we describe increased ratios of sphingomyelin/ceramide and sphingomyelin/hexosylceramide in LCHAD deficiency which may contribute to the neuropathic phenotype of LCHADD/mitochondrial trifunctional protein deficiency.


Assuntos
Ácidos Graxos/metabolismo , Fibroblastos/enzimologia , Erros Inatos do Metabolismo Lipídico/enzimologia , Lipidômica , Metaboloma , Pele/enzimologia , Acil-CoA Desidrogenase de Cadeia Longa/deficiência , Acil-CoA Desidrogenase de Cadeia Longa/genética , Cardiolipinas/metabolismo , Carnitina O-Palmitoiltransferase/deficiência , Carnitina O-Palmitoiltransferase/genética , Estudos de Casos e Controles , Células Cultivadas , Ceramidas/metabolismo , Feminino , Humanos , Erros Inatos do Metabolismo Lipídico/genética , 3-Hidroxiacil-CoA Desidrogenase de Cadeia Longa/deficiência , 3-Hidroxiacil-CoA Desidrogenase de Cadeia Longa/genética , Masculino , Erros Inatos do Metabolismo/enzimologia , Erros Inatos do Metabolismo/genética , Oxirredução , Esfingolipídeos/metabolismo , Espectrometria de Massas em Tandem
19.
Blood ; 137(25): 3518-3532, 2021 06 24.
Artigo em Inglês | MEDLINE | ID: mdl-33720355

RESUMO

Acute myeloid leukemia (AML) cells have an atypical metabolic phenotype characterized by increased mitochondrial mass, as well as a greater reliance on oxidative phosphorylation and fatty acid oxidation (FAO) for survival. To exploit this altered metabolism, we assessed publicly available databases to identify FAO enzyme overexpression. Very long chain acyl-CoA dehydrogenase (VLCAD; ACADVL) was found to be overexpressed and critical to leukemia cell mitochondrial metabolism. Genetic attenuation or pharmacological inhibition of VLCAD hindered mitochondrial respiration and FAO contribution to the tricarboxylic acid cycle, resulting in decreased viability, proliferation, clonogenic growth, and AML cell engraftment. Suppression of FAO at VLCAD triggered an increase in pyruvate dehydrogenase activity that was insufficient to increase glycolysis but resulted in adenosine triphosphate depletion and AML cell death, with no effect on normal hematopoietic cells. Together, these results demonstrate the importance of VLCAD in AML cell biology and highlight a novel metabolic vulnerability for this devastating disease.


Assuntos
Ácidos Graxos/metabolismo , Leucemia Mieloide Aguda/metabolismo , Acil-CoA Desidrogenase de Cadeia Longa/genética , Acil-CoA Desidrogenase de Cadeia Longa/metabolismo , Linhagem Celular Tumoral , Ciclo do Ácido Cítrico , Ácidos Graxos/genética , Glicólise , Humanos , Cetona Oxirredutases/metabolismo , Leucemia Mieloide Aguda/genética , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo
20.
J Physiol Biochem ; 77(2): 249-260, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33730333

RESUMO

Lipid metabolism rewiring in gastric adenocarcinoma (GA) pathogenesis is still not clearly elucidated. This study aimed to describe the role of lipid catabolism in GA patient outcomes and possible therapeutic targets by analyzing the effect of hypoxia-inducible factor-1α (HIF-1α) on fatty acid oxidation (FAO). AGS cell line was cultured in normoxic and hypoxic conditions, and FAO-related genes were analyzed by real-time-PCR and Western-blot. The study group comprised 108 newly diagnosed GA patients and 152 control cases. Serum concentrations of medium and long-chain acyl-CoA dehydrogenases (MCAD and LCAD) proteins were measured using ELISA, and local expression of HIF-1α, carnitine palmitoyl transferase 1 (CPT1A) and peroxisome proliferator-activated receptor γ (PPARγ) was evaluated by immunohistochemistry. In addition, gene expression of PPARγ, CPT1A, LCAD, and MCAD was assessed by real-time-PCR. In vitro findings indicate HIF-1α upregulation and FAO-related genes and proteins reduction in the hypoxic culture of AGS cells. GA patients had significantly lower circulating levels of LCAD compared to controls. Higher protein expression of HIF-1α and downregulated CPT1A and PPARγ were observed in GA tissues versus controls. Gene expression of CPT1A, PPARγ, LCAD, and MCAD were repressed in GA tissues compared to controls. Moreover, reduced expression of CPT1A, PPARγ, and MCAD were correlated with HIF-1α upregulation in GA. Poor patient outcome was associated with lower PPARγ and LCAD expression in GA. HIF-1α upregulation in human GA patients and AGS cells was paralleled by downregulation of lipid catabolism genes potentially via reduced PPARγ-mediated FAO. This metabolic adaptation to hypoxic condition may play a role in GA pathogenesis and might have clinical and therapeutic value in GA patients.


Assuntos
Acil-CoA Desidrogenase de Cadeia Longa/genética , Acil-CoA Desidrogenase/genética , Adenocarcinoma/genética , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , PPAR gama/genética , Neoplasias Gástricas/genética , Acil-CoA Desidrogenase/metabolismo , Acil-CoA Desidrogenase de Cadeia Longa/metabolismo , Adenocarcinoma/metabolismo , Adenocarcinoma/mortalidade , Adenocarcinoma/patologia , Idoso , Idoso de 80 Anos ou mais , Carnitina O-Palmitoiltransferase/genética , Carnitina O-Palmitoiltransferase/metabolismo , Estudos de Casos e Controles , Hipóxia Celular , Linhagem Celular Tumoral , Ácidos Graxos/metabolismo , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Metabolismo dos Lipídeos/genética , Masculino , Pessoa de Meia-Idade , Oxirredução , PPAR gama/metabolismo , Transdução de Sinais , Neoplasias Gástricas/metabolismo , Neoplasias Gástricas/mortalidade , Neoplasias Gástricas/patologia , Análise de Sobrevida
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...